Q. Prove: \frac{cot(x)}{1-tan(x)} + \frac{tan(x)}{1 - cot(x)}=1 + tan(x) + cot(x)}
A. \begin{array}{lll}\\ \frac{cot(x)}{1-tan(x)} + \frac{tan(x)}{1 - cot(x)} &= \frac{\frac{1}{tan(x)}}{1 - tan(x)} + \frac{tan(x)}{1 - \frac{1}{tan(x)}}&\mbox{Expressing } cot(x)=1/tan(x)\\ &= \frac{1}{tan(x)(1-tan(x))} + \frac{\tan^2(x)}{tan(x) - 1}& \mbox{Simplifying fractions.}\\ &= \frac{1}{tan(x)(1-tan(x))} - \frac{\tan^2(x)}{1- tan(x)}& \mbox{Last term as a subtraction }\\ &= \frac{1 - tan^3(x)}{tan(x)(1-tan(x)}& \mbox{Rewriting as a single fraction}\\ &= \frac{(1 - tan(x)){(1 + tan(x)} + \tan^2(x)}{tan(x)(1-tan(x))}& \mbox{Factoring a difference of cubes}\\ &= \frac{(1 + tan(x) +\tan^2(x)}{tan(x)}&\mbox{Cancellation by division}\\ &= cot(x) + 1 + tan(x)& \mbox{Division}\\ &= 1 + tan(x) + cot(x)& \mbox{Rearranging terms.}\\ \end{array}